Advanced LIGO subsystems
are the organizational units of the overall project. Follow the links below to view the mission and progress of each subsystem.
Auxiliary Optics | Core Optics |
![]() |
![]() |
Data Acquisition | Data and Computing Systems |
![]() |
![]() |
Facilities Modifications |
Input Optics |
![]() |
![]() |
Interferometer Control |
Pre-Stabilized Laser |
![]() |
![]() |
Seismic Isolation |
Suspensions |
![]() |
![]() |
LIGO Technology Development and Migration
Explore the menu of case study links (left) to view impacts of LIGO technology across the broader science and engineering community.
Technology Type: Optical Components
Adaptive Laser Beam Shaping
** Institution: University of Florida Gainesville
** Contact: David Tanner tanner(at)phys.ufl.edu, 352.392.4718
** Funding Agency: National Science Foundation
** Technology Source: LIGO Scientific Collaboration (LSC) members
outside of LIGO Laboratory
** Patent Thumbnail
Thermally-induced laser-beam wavefront distortions are typically caused when a high-power laser beam passes through an nominally transparent optical element. A small amount of residual optical absorption causes the optical element to be slightly heated where the beam intensity is highest. This heating produces wavefront errors through either thermo-elastic distortion of the element figure or thermo-optical change in the refractive index. The high laser power and extreme sensitivity to beam distortions has required the LIGO team to develop adaptive laser beam shaping techniques. We have developed an approach to correcting this distortion for our application in gravitational wave detectors by using a second transparent element and placing heaters on the edge to apply a compensating heat induced distortion, thus flattening the wavefront. By using several heating elements, more complicated aberrations can be compensated.
This technology can benefit the larger industrial and homeland security base. High-power laser systems are now used in a wide variety of applications, including directed laser energy weapons, laser radars, scientific and research applications of high power laser systems, welding, material cutting, and hole drilling. As the laser power continues to increase and new applications emerge, the need to control the beam wavefront will become an increasingly difficult challenge.
Explore Advanced LIGO
Construction Schedule
Instrumentation and Astrophysics
An Overview of the Upgrades
The International Partnership
Science Impacts
LIGO Technology Transfers
LIGO Scientific Collaboration
Public Outreach
LIGO Magazine
aLIGO Home